
™

10.

il,

ELLIOTT 903 ALGOL

OBJECT CODE MANUAL (JUNE 1966)

CONTENTS

INTRODUCTION

FORMAT OF REAL, INTEGER AND BOOLEAN VARIABLES

THE STACK AND ARRAYS

STORAGE ALLOCATION

"PORD OBJECT CODE

5.1 As held in the store

5.2 As punched on paper tape

FUNCTION CODES

6.1 Glossary

6.2 Names of codes

6.3 Address parts

6.4 Actions specified

PRIMITIVES

7.1 Listed in numerical order

7.2 Actions specified

PARAMETER CHECKING WORDS

INPUT AND OUTPUT

LIBRARY AND MACHINE CODED PROCEDURES

EXAMPLE TRANSLATIONS

1. : INTRODUCTION

The purpose of this manual is to describe the object
code of the Elliott 903 Algol system. The elements of this

code are called "pords" (parameter words) and are output on
to paper tape by the Algol translator while it is reading the
source program on an input paper tape. These pords are

interpreted one at a time at run time.
The object code is based on one described in the book

"Algol 60 Implementation" by Randell and Russell, but is by

no means identical to it.

A run time stack is used, somewhat like that in the

book, in order to evaluate expressions and to deal with the
execution of blocks, procedures and for statements. Although
a number of features, for example strings, are handled identically
in Randell and Russell and in 903 Algol, it has been possible

to introduce certain simplifications because of the restrictions
imposed by the IFIP subset. Other changes have also been made
and the principal differences are:-

1. The absence of recursion in the subset permits
scalars to be given fixed addresses in the store;
arrays cannot be treated in this way because their,

size is not known until run time. Pa

26 The treatment of labels and switches is simplified
by the absence of designational expressions from
switch lists and by the requirement to declare
labels in switch lists; this latter is not an
IFIP restriction.

36 The type of an expression, i.e. whether it is real,
integer or boolean can be decided at translation
time because of the rules of the subset. Unfortun-
ately the parameters to formal procedures form an
exception to the rules and it was decided to check
at every procedure entry that the actual/formal
correspondences are legal; this check extends to
include the number of parameters or dimensions of

a procedure or array parameter respectively.

4, The restricted call-by-name'in the subset removes

the need for the "implicit subroutines" described

in the book. .

5« The addressing of parameters is not as elegant as

the method described in the book; although the
vector called "display" has been removed, a search

down the stack at each parameter reference is

sometimes necessary.

6. The object program address increases by one word

at a time rather than by one syllable at a time.

The object program does not accumulate in the store
as translation proceeds but is punched out on paper
tape (in relocatable binary form). There is there-
fore no problem in allocating space to hold the
object program, but there is the new problem that
one cannot alter something which has already been
punched. This is overcome by making use of some
facilities of the loader program which performs a

second pass as it stores the pords (see 5.2 below).

Input and output operations which correspond to all
the features of read and print lists have direct

counterparts in the pords,

An object program block is set up for a procedure
body, a for statement, or a block which contains
an array or switch declaration.)The case where
time is saved is where only loca]' variables are

declared and this, unfortunately is rare in practice.

Sentedt

FORMAT OF REAL, INTEGER AND BOOLEAN VARIABLES

Real

In the store a real, or an element of a real array
occupies two words with the left (more significant)
word at an address one lower than the right hand
word, There is no restriction for the left hand
word to be at an odd or even address.

a c : t 7

sign bit zero bit

mantissa (top 17 bits) (bottom 10 bits)

exponent (7 bits)

With mantissa = a and exponent = b a number of

value x is represented as

x= ax 2” with for «#0 -l<a < -$
$a <i

-64¢ b < 63
forx = 0 , aso , b=o

2.3

36

In this form it is said to be packed. It is to
be noted that the most significant digit of the

exponent acts as a sign bit so that if b= -63
the digits are

1000 OO1
18

The largest number which can be held is 9.223 x 10

approximately and the accuracy is to 8 significant

decimal digits (27 bits plus sign bit).

When a real number is brought to the stack it is

unpacked into three locations with the exponent
occupying the third location and the exponent part
of word two cleared to zero. Intermediate results
are therefore held to an accuracy of 34 bits plus ~
sign; round off occurs when the result is assigned

to a location pair in the store.

integer

An integer occupies a single word of 18 bits and
lies between -131072 and +131071.

Boolean

True is represented by the value +1 and false by
the value zero; in either case a whole word is

used to hold the value.

THE STACK

The stack is basic to the operation of the system and is

used to hold, among other things, the intermediate results formed

during the evaluation of an expression.

3.1 Assignment statement

If a, b and c are all real then the Algol text

as= b +c3

is translated into the pords (for explanation see

6 below) :-

TRA "al
TRR " b "

TRR "oc"!
PRIM R+ReR
PRIM ST

The interpreter scans down the pords and, in the

case of data references, places the address or the

value on the stack; three locations are allotted

to each entity in the stack. After scanning the
first three pords therefore the stack looks like

this:-

> N
/

fe,

|_|
l | , Ff
P?—— co oOo
address of value of value of

a b c
Stack Pointer,

SP points to
next free set of
locations.

A "PRIM" pord defines an operation, in this case

the addition of two reals; after this pord the

stack looks like this:-

r el
{ f

ot a nn
address of value of |

a . b+e SP

Finally the "PRIM ST" pord assigns the value of
b+c to a and moves the stack pointer, SP, back to

where it was before the statement began. The

stack therefore does not grow continuously but
returns to a standard place at the end of each

statement.

Procedure calls

When a procedure is entered in Algol it is necessary

to store the return address from which the procedure

was called. The address within the pord program is

called the pord pointer, PP and this is preserved

in the stack at the point of call since it indicates

the next pord to be taken after execution of the

procedure.

In fact it is necessary to preserve four quantities

in the stack in order to enter and leave a procedure

correctly; these four are:-

Entry pointer EP Points to the start of the four

locations (called a "stack
entry") which hold the status
of the calling block,

Pord pointer PP Points at next pord for a

return address.

EP’ -3m Where there are m parameters,

this address is the value to
which the stack pointer must

return after exit from the

procedure,

Block number BN This is a unique 9 bit integer

for each run time block, Its
presence in the stack enables
a parameter to be referenced
by searching down the stack if
necessary. It also allows a
"go to" to leave the procedure

body.

The stack entry comprises all of these as shown
below, primes denote quantities of the current

block and unprimed quantities refer to the calling

block.

‘ i EP PP oot BN a3

|
EP’ SP

¢

The first two locations are filled in at the point
of call and the last two at the procedure's entry

point.

The parameters to a procedure and the space for its
result, if any, are also held in the stack. Para-

meters called by value are developed in the stack
as values at the point of call and parameters called
by name have their addresses in the stack.

Example

begin integer procedure SUM (A,B); value A;
integer A,B;

SUM:= A+B; P

integer X, Y, 3; seta antesger A; ’ 3 e — yl

X:= SUM (Y*%, Y); Kfere

After the entry to SUM the stack contains

v EP’ 3
~ | BN 4 ii EP|PP Si 3

T q

address of ' space for value of address of

Xx result of Y*S Y
SUM hs

‘ 4
EP SP

Formal pointer
FP’

3.5

During the body of SUM reference is made to another
pointer called the formal pointer FP, This points
to the result space if a type procedure is involved
and a parameter numbered n is always referenced by
the item stored at FP + 3n. FP is set up by the
pord at the entry to the procedure body. After
exit from the body the stack contains

3

a
1

address of result of |

x SUM
= Y*¥Z+Y SP

ready for the assignment to X to be made.

For-statements

A for-statement is made into a run time block with
the help of a stack entry involving five quantities
and this is always followed by the address of the
controlled variable:-

EP jc BN |b
no A P| 4

EP’ address of SP
controlled

variable

c= pord address

of first for- *step-until
list element. marker.

The address ‘a’ is the address of the controlled
statement and the address b is that of the next
statement. The sign bit of the word containing

‘al is set equal to one to mark the entry as a for-
block in case a go to ‘causes an exit from the block,

A while or step-until element continually executes
the statement beginning at‘a’which eventually
returns control to c’the for-list element in
question where evaluation of the condition begins
again; during this evaluation the stack is used
as workspace in the normal way with the help of SP.

When the element is exhausted the address c gets
overwritten with that of the next for-list element

and so the process goes on.

-6-.

A simple for-list element merely overwrites c
before execution of the controlled statement.

The last for-list element is followed by a special
pord which causes exit from the entire for-block
and execution resumes at pord address b,

The location at EP+7 is the step-until marker used

to prevent the incrementing of the controlled
variable at the first iteration. It is important
that BN is stored in the same relative position
to EP for a procedure and a for-block stack entry
because of parameter references and go to.

3.4 Arrays

An array has space set aside for it in the stack
just after a block entry in which it has been
declared, For the details of this action see
MAMPS in 6.4 below. An array parameter called
by value causes all the elements of an array to
be copied from one part of the stack to another
(see 8 below).

4, , STORAGE ALLOCATION

For a basic machine there are alternative ways of dividing
up the store depending on whether the library of Algol procedures
is held after the end of the interpreter or is held as a relocat-

able binary paper tape.

With a multi module machine it would appear reasonable

to confine the interpreter, library and special machine code to
module 1 and to place the object code etc in module 2 onwards.
The only restriction is that the length of the object code,
constants and scalars must not individually exceed 8191 words.

Figure 1 shows the case of a basic machine containing
the whole of the library in the store. Dealing with the areas

in turn:-

4,1 Interpreter
This part is a machine code program which contains
the subroutines for input/output, the simpler Algol
standard procedures, floating point arithmetic,

interpretation of the pord code and management of
the run time stack, The interpreter is aware of
the starting address of the pord program even if
the library changes size because the pord program
is loaded by entry at a special address,

4.2

4.3

ed

The library

This consists of the machine coded Algol
procedures:-—

cos under library name "qatrig"
sin
sqrt

instring
outstring under library name "qastri"
lowbound
range

arctan }

The linking of these procedures to their calls from

within the object code is done by the loader program
which acts in a similar manner to that of the SIR
loader. It follows therefore that all the above
names including qatrig and qastri are held in the
loader's dictionary before the relocatable Algol

object code tape is fed in.

If the library gets deliberately overwritten by
input of an object program it can be re-established

by a start at 12; this also resets the name into

the loader's dictionary.

The pord code

This is described in detail in the rest of this
manual. Each word has, like machine code, a functior
part of 5 bits and an address part of 13 bits and

these words are examined in turn by the interpreter.
All the operations required by the Algol source
text are done by interpreter subroutines which are

reached from the pords. :

Constants

Each constant mentioned in the Algol text is stored

here (once only) as a positive integer or a positive
floating point number. Information relating to

switches and labels is also held here and the
contents of the whole. area are punched out at the

end of a translation,
This part of the output tape is preceded by the
left hand global name "qacod1" (Algol Constants

Object Data Load) and this is noted by the loader.

All references to constants, labels or switches at

run time require the interpreter to refer to the

address of qacodl.

45

4.6

4.7

4.8

4.9

4,10

4,11

Scalars

Each integer, boolean or real variable declared in
the source text has space reserved for it here.
The area is labelled globally by the name "qavnda"
(Algol Variables Notional Data Area) and this is
also noted by the loader. All references to
these variables at run time require the interpreter

to refer to the address of qavnda.

The space is reserved by using a SIR skip code and
hence the area is not cleared to zero during input,

nor is it cleared to zero at the start.

This scheme is not so efficient as one which places

all scalars on the stack, but the loss of space is
never serious in practice and there is a slight

gain in speed. :

Machine code

A User may wish to have special procedures written
in machine code and these can be input by a start
at 11 after input of the Algol pord program.

Stack
As described in section 3.

Loader names

This is a list of names and addresses which is used
by the loader to link procedures to their calls,

Loader

This loads relocatable binary paper tape.

Systems area
No use is made of this area at present. It could
be used for transferring the Algol translator or

interpreter from magnetic tape or disc into the

store.

Summary

There is better use of available storage if the
Algol is translated in "library mode" (start at 12).
Figure 2 shows the layout. In the first place it
is likely that the program does not need all the
library and only the part which is needed is present;
in the second place the space needed for scalars
can overlap the loader but to take advantage of this
the scalar space must come last. This is what
happens when a translation is done in library mode.
Figure 3 shows a suggested use of store in a multi

module machine.

a

FIGURE 1.

Basic machine; library entirely stored

UMIO aswpisdy
f v

Address Remarks

8

INTERPRETER

4200
LIBRARY

4900
PORD

OBJECT CODE

CONSTANTS 6000 Labelled QACODL
SCALARS 6200 Labelled QAVNDA

MACHINE CODE 6400 If any is present

} stack J 6800

LOADER wanws |

LOADER 7500

SYSTEMS AREA 8000

= 16 =

Basic machine; library detached

INTERPRETER

OBJECT CODE

CONSTANTS

.DETACHED LIBRARY

MACHINE CODE

SCALARS

| STACK |

t
LOADER NAMES

LOADER

SYSTEMS AREA

Address

ll -

8

4200

5300

5500
5700

6100

6300

7500

8000

FIGURE 2,

Remarks

Labelled QACODL

If any is present

Labelled QAVNDA

. FIGURE 3.

Multi module machine; suggested scheme

Address

8

INTERPRETER

4200
LIBRARY

4900
SPARE FOR

SPECIAL MACHINE
CODE

fF tT
| LOADER NAMES _|

LOADER 7500
SYSTHNS ARBA 8000

8192

OBJECT CODE

CONSTANTS

SCALARS

STACK

‘
AD LIB

= 12 =

OBJECT CODE

As held in the store

The object code consists of 18 bit words which are
interpreted at run time. Like machine code each

word has a 5 bit (mnemonic) function part and a
13 bit address which is often a data reference:-

TIR WN "Take Integer Result from location N in
the Notional Data Area and store it in
the stack; advance the stack pointer by

three",

When the address is not a data reference then it

is either a small integer:- f

INDR 3n. "Store in the stack = element from an ~ i

~~ n dimensional array" Say

or it is the address of part of the object program

being executed:-

IFJ N "If False Jump. The top-most stack
location is regarded as a boolean result;

reduce the stack pointer by three and, if. ?

false, jump to address N from the begining,

of the object code".

or it is some miscellaneous quantity, sometimes a

packed pair of items.

Of the 32 possible functions there are about 30

which are described below; one of these,called

PRIM, is used to reach one of about 60 further

subroutines and the entire collection of 90-odd

subroutines forms the bulk of the interpreter.

Example, if a and b are integers, the Algol text:-

bs: = a+53

is translated into the following object code:-

TIA a og Take Integer Address of b

TIR Miggtt Take Integer Result a

TIC ihe Take Integer Constant 5

PRIM T+I Add Integers

PRIM st Store result in b.

The references to b, a, 5, I+I and ST are all

small integers in the actual code.

As punched _on paper tape

There are two formats on the paper tape corres-

ponding to the two input modes for the 920 and 903.

920 mode (7 bits in) 903 mode (8 bits in)

ABCDE.FGH ABCDE.FGH
IJKLM.NOP IJKLM.NOP ?
QRSTU.VWX QRSTU.VWX ;

direction

of motion

ABC «——— Loader code->B C D

DLT ¢— —— Parity bits—+A I Q and are all zero.

EFGHIJKMNOPQRSUVWX <- Word > EFGHJKLMNOPRSTUVWX

. itself

It will be noted that in 903 mode the parity bits
are all zero; in 920 mode the parity bits are
correct on tape, but ignored by the hardware.
However there is a checksum accumulated for every

row of tape for protection against faulty punching,

The following loader facilities are used:

code 1 Load as it stands

code 2 Load after adding base address

code 3 Update an implicit jump such as is’
needed around a procedure body or

along a conditional expression, :
Code 3 accompanies the word containing
the address of the word to be updated.

For such an update the following word

is zero and is accompanied by loader
code zero and this is followed by

three blanks.
Code 3 followed by a non zero word is

used to update an array or procedure

checking word (see 8 below).

code 4 With subcode 1 for the left hand global
labels "qacodl and "qavnda"; with

subcode 2 for punching the call of
library procedure names. These names
are never accompanied by an increment.

7

code 5 Skip n locations. This is used to

reserve data space at the end of the
program,

code 6 This is a checksum,

code 7 Stop loading and print "FIRST NEXT"
message.

Generally speaking the chaining facility of the
loader is only used for multiple calls on a library
procedure where this latter is attached to the end

of the pord tape.

- 4.

ELLIOTT 903 ALGOL

Addition to Pord Manual December 1966

Section 6

The code number 5 has been allotted to a new
function, INDFS, Index Formal Switch. It is punched

with loader code 1 and has BN, n as its address part.

Action

"Pind FP using BN; address := contents of (3n + FP) ;
subtract 3 from SP; get integer from stack};

If integer is zero or negative or greater than
contents of address then FAIL;

store 2 * integer - 1 + address at SP; add 3 to SP; "

Purpose

INDFS is needed at the call of P in the program

below.

TEST;

begin

switch S := Ll, L2, L3; :

procedure P (A); value A; label A; goto A;

procedure Q (B); switch B; P (B [2]) ;

comment start of program;

Q (Ss);
L1: L3 : print “IS BAD ; stop;

L2 + print” L* GooD’;

end;

D. Hunter

M
m
,

6.1

PP
SP
EP
FP

BN

N
n

m
d

a

PBA

FUNCTION CODES

Glossary

Pord Pointer value
Stack Pointer "
Entry Pointer '"
Formal i "

Block Number

A relative address
A parameter number

The number of parameters
The number of dimensions

The number of arrays

Primitive Base Address
(= address of beginning
of a table of subroutine
entry addresses

QACODL Address of start of
Object Data Load

QAVNDA Address of start of

Mnemonic

name

CF
CFF

GT
GTF
GTFS
GTS

IFS
IFUN
INDA
INDR

' INDS

Notional Data Area

input output parameter

Base Address of programs

Names of codes

9 "stored

in bits 6-14 inc,

4 " stored
in bits 15-18 inc,

6 bits stored
in bits 6-12 inc.

6 bits stored
in bits 13-18 inc.

13 bits

13 bits

a small integer

Alphabetically listed names for 5 bit pord
functions.

Explanation

Call Function

Call Formal Function .

Go To

Go To Formal
Go To Formal Switch

Go To Switch

If False Jump

Integer Function

Index Address

Index Result

Index Switch
INOUT Input/Output

MAMPS Make Array Maps

a LS =

Notes

Refers to labels area

Conditionals

Subscript references

At array declaration

~

Mnemonic

name Explanation Notes

PE Procedure Entry
PEM Procedure Entry machine

code
PRIM Primitive Entry

RFUN Real Function

TA Take Address In program
TF Take Formal Parameter references

TIA Take Integer Address
TIC Take Integer Constant
TICA Take Integer Constant

Address
TIR Take Integer Result
TLA Take Label Address
TRA Take Real Address
TRC Take Real Constant

TRCA Take Real Constant Address
TRCN Take Result Call by name
TRR Take Real Result

UI Unconditional Jump

(TRAP Take Real Address in:
Program) Hand pording only

6.3 Address parts

Mnemonic Loader Function Punched Referenced
code code Address Address

CF 2 or 4 21 Nor NAME N+BA or library
. NAME entry

CFF 1 22 BN ,n 3n+FP

GT I 10 N N+QACODL
GTF L Le. BN,n 3n+FP
GIFS al 14 BN,n "
GTS 1 9 N N+QACODL

IFJ lor 2 7 ‘8191 or N N+BA
IFUN Ae 28 BN,n 3n+FP
INDA 1 L2 . 3n SP-3n etc see

below

INDR 1 13 bi "
INDS 1 27 N N+QACODL

INOUT L 15 Pp see below

MAMPS 1 6 d,a, - see below

PE 4 23 - BN,n
PEM ae 30 n
PRIM 1 31 N N+PBA

RFUN dy 29 - BN,n 3n+FP

- 16 -

Mnemonic Loader Function Punched Referenced

code code Address Address

TA 2 (¢) N N+BA

TF 1 24 BN,n 3n+FP
TIA By i N N+QAVNDA

TIC L 18 N N+QACODL

TICA L 17 N N+QACODL see also

TLA

TIR 1 2 N N+QAVNDA

TLA r 17 N N+QACODL see also

TICA

TRA Zz 3 N N+QAVNDA

TRC 1 20 N N+QACODL

TRCA 1 19 N LW

TRCN 1 26 BN,n 3n+FP
_TRR 1 4 N N+QAVNDA
USI lor 2 8 8191 or N N+BA

(TRAP 2 16 N N+BA cf TA)

6.4 Actions specified

CF The intention of this is to make a partial
stack entry before jumping to a procedure

body.

"address:= N+BA;
LI: store EP at SP; store SP in Entry Pointer

register; add 1 to SP; store PP at SP;

add 1 to SP;
PP:= address;"

Crr This is for a call of a formal function.

"Pind FP using BN; address:= contents of

3n+FP; go to Lil in CF above;"

GT An ordinary GO TO is executed by reference
to two words in QACODL, of which the first

contains the label address and the second
the Block Number. The Block Number is
needed in case a jump to an outer block
is involved.

"address:= N+QACODL;
L2: if BN equals contents of (address + 1)

then go to contents of address;

L3: if contents of (EP+3) equals contents
of (address + 1) then to to L4;
EP:= contents of EP; go to L3;

L4; if contents of (EP+2) <O then go to L5;
SP:= contents of (EP+2);
FP;= SP-3; go to L6;

L5: SPr= BP;

L6: EP:= contents of EP;
BN:= contents of (EP+3);
go to contents of address;"

- 17 =

GTF

GTFS

GTS

IFJ

IFUN

INDA

INDR

INDS

INOUT

MAMPS

"Find FP using BN; address: = contents of
(3n+FP); go to L2 in GP above;"

"Find FP using BN; address: = contents of
(3n+FP); go to L7 in GTS below;"

"address: = N+QACODL;
L7: subtract 3 from SP; get integer from

stack; if integer is zero or greater

than contents of address then FAIL;
address: = 2 x integer -1 + address; go to

L2 in GT above;"

"subtract 3 from SP; get boolean (integer) from
stack; if zero then go to address N+BA;"

This stacks the address of a function name if

n= 0 or of a parameter if n # 0.

"Find FP using BN; store(3n+FP) at SP; add
1 to SP; store the constant +1 at SP; add
2 to SP;"

The constant +1 indicates that the address is
that of an integer or boolean variable; this
is checked at a procedure entry against the

parameter checking word (see 8 below).

The purpose of this is to place the absolute
address of an array element in the stack having
been given the address of the map entry and n
index values. If the array has real elements

then the most significant digit of the result
‘isa one, picked up from the array map. Next
to this is placed +l for an integer or +2 for a

real array element. See 8 below.

As for INDA except that the value of the array
element is brought to the stack and unpacked

into 3 locations if real.

"address: = N+QACODL; subtract 3 from SP;
get integer from stack;

if integer is zero or greater than contents of

address then FAIL;

store 2 x integer -1l +taddress at SP; add 3 to

SP;"

See section 9; the address part of the pord, p,

determines the action in an identical way to
that of the address part of a PRIM pord.

This operation is executed immediately after
entry to a block in which local arrays are declared.

The number of dimensions, d, and arrays, a, are

packed with 6 bits each at the right hand end

of the word containing MAMPS,

begin real array A,B,C,D [P:Q, R:S, T:U];

is translated to

TIR

TIR

TIR

TIR

TIR

TIR

MAMPS

A: 7/0

-

/ indicates real
3 dimensions; 7 locations
onwards to map address

N
O
W

G
H

H
N
D
O
N
V

w

F
O
W
O
W
O

+0 Map address filled in here
ep caine of MAMPS (equal to
SP).

The indications "A:" etc do not mean that a global

label is punched, merely that reference to array

A is by specifying the address of the "array pair"

marked "Az",

Using the top six entries in the stack an array

map is calculated and placed in the stack, advanc-

ing SP appropriately. The array map fora d,

dimensional array contains 2d + 1 words in all. *

These are arrayed as follows (for d =3):-

array map ¢ TOTAL SIZE ; $,

OFFSET eS gi,
ei wide

cl ORE se a>
R2 wfc Seye,

c2 /

£5

Note that there is one more lowbound value, t ’

than map coefficient, c, TOTAL SIZE is the

number of locations occupied by the array itself.

OFFSET is the number of locations between the

leading element of the array and the element all

of whose index values are zero; it is positive if

the element with zero indices lies at a higher

address than the leading element.

Kyers 2dt2 words fecaure

the mabe € duwenstiws

sted tw Pout? Tome size

- 19 - Adin Lffurest A’ peinber pow

th crentel Ww @AVNDA — feo prwk-

powk & amney , azeond 4 Anne,

PE

PEM

The coefficients cl, c2 etc are calculated as

follows:-

cl is the range of the first subscript multiplied

by two if the array is real.

ce2 is the range of the second subscript multiplied

by cl.

The lowbound values fa, 22 etc are not necessary
for the evaluation of the address of an element
of the array, but are necessary for the standard

procedure lowbound,

The address of the leading element of each array
is filled in at A:, B: etc., the first being

equal to SP, the next to SP + TOTAL SIZE etc.
OFFSET is then calculated

OFFSET = - 2x P-=-Rxcl-Tx c2

Finally there is a jump to execute the next pord

beyond the map address.

The address of element B [i,j,k] is -
the contents of location B: with its "/" to
indicate real plus

OFFSET

plus
2i + jx cl +k x c2

This operation is at the head of a block bearing
the number BN” and expecting m parameters. The
action is to complete the stack entry set up by
CF or by CFF, and do parameter checking (see 8

below).
BN occupies 9 bits, m 4 bits.

"store EP-3m at SP; add 1 to SP; store (old)
BN at SP; add 1 to SP; store BN” in Block
Number register; store EP-3m-3 in Formal Pointer

register;"

This is placed at the head of a piece of machine
code to make it look like pords when called from

within the User's Algol program.

Example.

[ARCTAN]
ARCTAN PEM 1

+0 for return address

eee :

O ARCTAN+1 normal exit in machine

/8 1 code

- 20 -

The stack entry is completed as for a PE operation
but using the current value of BN in place of BN’,
There is then a call of the machine code from within
the interpreter, On returning to the interpreter
in the normal way for a machine code subroutine
the action for RETURN (see7.2below) are executed.

PRIM Enter a subroutine at address N+PBA,

RFUN This stacks the address of a real type procedure

or a real parameter so that an assignment can be
made to it.

"find FP using BN;

store FP+3n + /O 0 at SP; add 1 to SP;
store /O 2 at SP; add 2 to SP;

The sign bit. on the address word indicates a real
address, and the sign bit on the +2 indicates an

unpacked quantity. The +2 indicates a real quantity
_for parameter checking (see 8 below).

TA "store N+BA at SP; add 3 to SP;"

TF "find FP using BN;
store contents of

store contents of
store contents of

add 3 to SP;

3n+FP) at SP;
3n+FP+1) at SP+1;
3n+FP+2) at SP+2;

TIA "store N+QAVNDA at SP; add 1 to SP; store +1
at SP; add 2 to SP;"

TIC "store contents of (N+QACODL) at SP; add 3 to SP;"

TICA) "store N+QACODL + the constant 8 O at SP;
TLA add 1 to SP; store +1 at SP; add 2 to SP;"

The +1 written by TLA gets,overwritten by +9 if
a label is an actual parameter.

TIR "store contents of (N+QAVNDA) at SP; add 3 to SP;"

TRA "store N+QAVNDA + the constant /O 0 at SP; add
1 to SP; store +2 at SP; add 2 to SP;

TRC "store contents of (N+QACODL) at SP; unpack the
contents of (N+1+QACODL) and store at SP+1l, SP+2;
add 3 to SP;"

TRCA "store /8 0 plus N+QACODL at SP; store +2 at
SP+1; add 3 to SP;

- 21 -

TRON "Find FP using BN; address: = contents of
3n+FP; store contents of address at SP};
if address has sign bit =1 then

begin if contents of 3n+FP+1 has

sign bit =l then transfer contents

of (address +1) to SP+1 and (address +2)
to SP+2 else unpack contents of (address
+1) and transfer to SP+1, SP+#2 end;

add 3 to SP; a

TRR "store contents of (N+QAVNDA) at SP; unpack
the contents of (N+1+QAVNDA) and store at
SP+1, SP+2;
add 3 to SP;

UI "PP; = N+BA;"

TRAP "store /8 O plus N+BA at SP;
store +2 at SP+1; add 3 to SP;"

This is only for referring to real constants in
hand porded programs. This function is not

produced by the translator.

7° PRIMITIVES

71 Listed in numerical order

Each primitive is asubroutine and is numbered
from 1 to 70; those which are numbered 1-29

and 63-70 are organisational and the remainder

are arithmetic, relational, logical or standard

procedure routines such as log and exp.

The numberical value of the primitive is used to
enter the routine via a table of addresses, and

each pord has the function part 31 or /15.

Primitive number Mnemonic Explanation

1 , CBL Call Block
2 CHECKB Check boolean
3 CHECKI Check integer
4 CHECKR Check real
5 - CHECKS Check string

6 DO
7 STW Store While

8 FINISH End of program

9 FOR Start of FOR statement

10 FR For Return

id FSE For statement end

12 DIV Integer divide

13: ITOR1 Integer to Real l

Se 22 =

Primitive number Mnemonic

14 ITOR2
15 NEGI

16 NEGR
17 RETURN
18 RTOI1
19
20 st

21 STA
22 STEP
23
24 WAIT

25

26 UNTIL
27 UP
28 RII7R
29 WHILE
30 I+I>1

31 R+R-OR
32 I-I~1I
33 R-R-R
34 IXI~I
35 R*¥R-R

36 I/I—-R
37 R/R-R
38 ItIL~1
39 Itl—-R
ho R*R>R

Aa I<IB
42 R<RB
43 I¢I—~B
4h R<R>B
4S -IsIl—B

46 R=R~B
Any IfI—>B
48. R4R—->B
49 IDI—B
50 R>R-»B

51 IRI +B
52 R2R~B

53 BAB~B
54 BYB +B
55 BEB—B

56 BOB B
57 —=—B~B

58 ABS
59 ENTIER
60 EXP

- 23 -

Explanation

Integer to Real 2
-Negate . integer

‘Negate. real
At end of block
Real to integer 1

Store

Store Also

Wait

Arithmetic

Relational

Relational

Logical

Standard procedures

‘ea

Primitive number Mnemonic Explanation

2-5

‘er

10

61
62
63
64
65

66
67
68
69
70

OT GN Standard procedures

These place integer
x in stack at SP-2

where xruns from 3

to 10 for primitives
63-70. The purpose
is for parameter
checking.

Actions specified

CBL

CHECK

DBO

STW

FINISH

FOR

FR

This has the same effect as a function
CF to a point two pords on and therefore

makes a partial stack entry.

These punch "newline, asterisk" followed
by a boolean, integer or real whose

value is at the top of the stack or a

string whose address is at the top of
the stack, SP is unchanged except
for CHECKS which reduces it by 3.

This makes use of the common procedure
ASSIGN (see below).

"ASSIGN; store PP at EP+1;

store contents of (EP+2) in Pord Pointer
register;"

"ASSIGN; "

Punch 100 rows of blank tape, the word
FINISH and a halt code. Then stop.

A stack entry is made. In the object
program FOR is followed by three pords.

PRIM FOR
a, _ address of controlled statement

BN ;

b address of next statement

“store EP at SP;
store (PP+4) at SP+1;*
store a + /O O at SP+2;
store old BN at SP+3;
store b at SP+h;
EP: = SP; add 5 to SP};

store BN’ in Block Number register;"

This ends a controlled statement.
"PP; = contents of (EP+1);"

* PP+h points to 5 locations after PRIM FOR

- 2h -

_
s

LL

12

13
14

15
16

17

18

20

21

22

2k

26

FSE

DIV

ITOR1

ITOR2

NEGI
NEGR

RETURN

RTOIL

ST

STA

STEP

WAIT

UNTIL

This undoes the effect of FOR and is

the last for list element.

"BN: = contents of (EP +3 ;

PP: = contents of (EP +4);
SP: = EP; EP: = contents of EP;"

See arithmetic primitives.

ji Convert contents of SP-3 and SP-6 from
) integer to unpacked real respectively.

f Replace the contents of SP-3 by minus

\ the contents.

Used at the end of a block or procedure.

"BN: = contents of (EP+3);
SP: = contents of (EP+2);
PP: = contents of (EP+1);
EP: = contents of EP};
FP: = contents of (EP+2) minus 3;"

Convert contents of SP-3 from unpacked

real to integer with FAIL if overflow.

This makes use of the common procedure
ASSIGN (see below)

"ASSIGN; subtract 3 from SP;

"ASSIGN; copy the contents of SP to SP-3
(SP+1) to SP-2

(SP+2) to SP-1;"

"ASSIGN; store PP at EP+1;
clear location EP+7;"

Halt but prepare to resume after a

start at 9.

"If the contents of (EP+7) are zero
then make them non zero else add the
contents of (EP+8) to the variable
whose address is at EP+5;°

If the sign of (the increment held
at EP+8 times (the controlled variable
whose address is at EP+5 minus the final

value given in (EP+11)) is greater than
zero then store PP at EP+1; this corres-—

ponds to element exhausted} .

subtract 6 from SP;

If the above sign is < O then store
the contents of (EP+2) in the pord
pointer register; this causes the
statement to be executed;"

The type of arithmetic is determined *
by the address of the controlled
variable held at EP+5.

27 UP This makes space in the stack for the
result of a type procedure.

"Add 3 to SP;"

29 WHILE If the topmost value is false then the
next pord is taken, but if true then

a pord jump occurs to the address
given in EP+2.

"subtract 3 from SP;

if false store PP in EP+1;
if true store contents of (EP+2) in
Pord Pointer register;"

procedure ASSIGN; "subtract 3 from SP;

address: = contents of (SP-3);
type: = contents of (SP-2);

if address has an "8 O" bit then
FALL because assignment to a
constant is being attempted;

store contents of SP at address;

if address < O then begin,if type
< O then

transfer contents of (SP+1) to
address+l and contents of (SP+2)
to address +2

else

pack together the contents of (SP+1)
and (SP+2) with round off and store
at address +1

ena;"

The primitives numbered 30-56 have two inputs and

one output. The left hand input is at SP-6, the right
hand input is at SP-3. The output occupies SP-3 or,
if real, the three words starting at SP-3. The nett

effect of each primitive is to reduce SP by 3. Failure
actions are not indicated.

Arithmetic 30-40 (and div no.12)
Relational 41-52
Logical 53-57 (note 57 is.like NEGL)

* Packing is determined by the contents of (EP+6).

w 26 =

The primitive_numbered 58-62 are the ones which JS

execute the Algol procedures which are always in the
store. A call of one of these procedures does not

produce a PRIM UP as an ordinary procedure call would.
The actions of all these primitives are:-

"replace contents of (SP-3) by the function of
the contents",

The primitives numbered 63-70 serve the purpose
of filling the stack with type information alongside the

address of any call-by name actual parameter, This
is for parameter checking.

8. PARAMETER CHECKING

At each procedure entry having m parameters there are m
parameter checking words following the "PE BN,m" pord. During

the execution of the PE pord,a check is made between the rele-
vant word whicn describes the formal parameter,and the corres-
ponding actual parameter given in the stack; the check includes

number of dimensions or parameters,

No check is made for a formal parameter called by Value.

If an array parameter is called by value then bs copying

of the array is done within the PE pord.

1 4 13 a checking word

v 2% dim

vel if called by value

xe has values as given below.

dim contains the number of dimensions plus the base

address of the pord program; this latter is a
nuisance but is an inevitable consequence of the
way the checking word is updated by the loader
program,

value of x parameter type value of dim

1 integer or boolean (6)
2 real ie)
3 integer or boolean array n+BA
4 real array n+BA
5 integer or boolean procedure n+BA
6 real procedure n+BA
7 procedure n+BA
8 switch” fe)
9 label (0)

10 string (e)

- 27 -

It will be noticed that all pords which stack a real
or integer address also fill the adjacent location with +2

or +l as in the table above. Pords corresponding to actual
parameters of types 3-10 are each followed by the appropriate

primitives,

9. INPUT OUTPUT

These operations all have a function part of 15 , INOUT

and an address part p.

value of p action

* oF read an integer
* 2 read a real

3 print an integer
4 print a real
5 aligned

6 punch global
7 digits
8 freepoint

9
10

* LL prefix
12 sameline
a5 scaled global
14 reader

* 15 print a string within a print list

16 aligned
17 punch local

18 digits
19 freepoint
20 reset the local settings from the

global settings.

21
* 22 _ prefix m

23 sameline local

24 scaled
25 reader

The parameters to all the above lie in the stack - if

there is one at SP-3 and if there are two at SP-6 and SP-3.

The operations with an asterisk * have addresses in the stack

and all the others, with the exception of sameline, have

values.

All parameters are cleared from the stack by decreasing

SP appropriately.

~ 28 -

wi
t

The global and local presumed settings are affected by

the operations as indicated,

A string is stored with its opening and closing string
quotes packed three characters to a word left justified and

space filled; inner strings in the 503 Algol sense are

permitted. The inner string is interpreted on output,

10. LIBRARY AND MACHINE CODE PROCEDURES

The library is a set of machine code procedures each

introduced by a PEM pord but there is no reason why hand

porded procedures should not be added. A hand porded

procedure must start with a PE pord containing a Block Number

less than 50 and be followed by the correct parameter checking

words.

Example

10.1 <As declared near the front of the Algol text.

code

integer procedure SUM (a, b)3
value a; integer a, b;

algol;

: This is not needed for library procedures such as

arctan which behave exactly as if such a declaration

had already been made before the User's program is

read.

10.2 As called from further on in the text

"93; = SUM (y+y , z);" is translated to

TIA Woe tt

PRIM UP make room for result
TIR Ny"

-T1R Nyt

PRIM I+I71
TIA "gy" call by name
CF SUM using loader global name

PRIM ST

10.3 As offered for assembly by SIR for "SUM: = a+b"

{suUM]
SUM /14 2

+0

ie) 38
/0 6

«= 29 =

10.4

11.

fe) 38

/l 3
/5 0

(e) SUM+1

/B 1
%

As hand porded

[SsuM]
SUM /17 642 Block Number 40

/1 (e) Checking words
al (e)

/12 640
/8 641
710 »=642
/15 30
/15 20
4150417

EXAMPLE TRANSLATIONS

In what follows the pords have been written symbolically
as far as possible and in a notation which is close to SIR in
the belief that this helps the explanation,

11.1 Notation

The function parts of pords are given mnemonically

e.g. TIA, TRR etc.

A variable name in small case replaces its address
in QAVNDA e.g. TIA x replaces TIA 5 if the address
ofxis 5.

A parameter name replaces BN,n,.

A primitive name replaces its number e.g. PRIM ST

for PRIM 20.

The address part of a pord referring to a constant
is given correctly in its absolute form and the
value of the constant mentioned in a comment.

The names of switches, labels, arrays and procedures

are freely used as local SIR labels for explanatory
purposes only.

Implicit forward jumps use a series of local SIR

labels beginning Rl, R2 for historical reasons.

= 30) 4

11.2

Global labels are declared for QACODL, QAVNDA,
the name of the program itself, any library calls
and any calls of machine coded procedures,

The semicolon convention e.g. 3;+2 and 84; is used

Program without a_run time block

TEST1;

begin integer a, b, c;

b: = 6;

at = cs = bt5

end;
*4+0

(TEST1 QACODL QAVNDA J

TEST1L INPUT 20

TIC 2 (+3)
INOUT 17
Us 95
Peo
£3 *
&TES

&T1
gs

TA 4s
INOUT 15 (PUNCHES PROG NAME)

TIA b
TIC 3 (+6)
PRIM ST

TIA a
TIA c
TIR b
TIC 4 (+5)
PRIM I+I>L

PRIM STA
PRIM st

PRIM FINISH

QACODL +0

+1

+3
+6

+5

QAVNDA

>+4

$

- 31 -

11.3 Program with run_time block,

TEST2;

begin switch s: loop, ret;

integer a, b we

ret 3: b: = 4;

loop: a: = b3 go to ret

end;

As for TEST1 for the first 1) pords then

PRIM CBL
Us RL
PE 816 (BN = 51)

RET TIA b
TIC 3 (+4)
PRIM ST

LOOP TIA a
TIR. b
PRIM ST

GT 6 (RET)

PRIM RETURN

Rl PRIM FINISH

QACODL = +O
+1

+3 5
;

S +2 a
- a

ie) LOOP
+816

ie) RET
+816
+4

.

QAVNDA
>4+3

The only difference between a program translated from

Algol and the example of 11.2 or 11.3 as assembled by SIR in
relocatable binary form, is that the Algol tape has a checksum
inserted just before QAVNDA; if this is not done then the first
library tape which gets copied after QACODL will cause a check-

sum failure at load time.

The remaining examples are usually excerpts from complete

programs. ;

- 32 -

11.4 Subscript variables

TEST33

begin array a,b,c [1:10, -5, 6];

real x,y}

integer i,j;

i: = jg: = 4;

e [i,j]: = 0;

xr: = a (2, 5];

end;

As for TEST1 and TEUST2 then

PRIM CBL
Us R1
PE 816

Tic) 81 +1)
£LC 3 +10
TIC 4 +5)
PRIM NEGLI
TIC 5 ee
MAMPS 131 ds2, a=3)

A /0 fe)

2 5
B /O te)

2 3
c /O fe)

2 1
+0

TIA i
TIA j
TIC 6 (+4)
PRIM STA
PRIM ST

TA c
TIR i’
TIR j
INDA 6 oy
TIC (¢] +0

PRIM ITOR1
PRIM ST

TRA ES
TA A
TIC 9 (+23
TLC 4 +5
INDR 6
PRIM ST

= 349.6

11.5

11.6

PRIM

Rl PRIM

QACODL +0

+1

+3
+10

+5
+6
+4
+2

QAVNDA
>+7

%

Conditional

RETURN

FINISH

statement

if »< y then go to CYCLE;

TIR me
TIR
PRIM R<CR>B
IFJ RLi7
GT cycle

R17 eee

Conditional expression

IFIP rule that the type of
taken to be real if this
at run time -

This illustrates the
an expression can be
depends on something

i: = if k < O then j else j + 2.03

TIA 1
TIR k
TIC fe) (+0)
PRIM I<I~>B
IFJ R1O
TIR j
UI Rll

R10 TIR j :
TRC (+2.0)
PRIM ITOR2
PRIM .R+R?R
US 342

R11 PRIM ITORL1
PRIM RTOI1

PRIM ST

- 34 -

11.7 Switch

go _to S[k];

TIR k

GTS Ss

11.8 Input output

11.8.1 print

INOUT
TIR
TIR
PRIM
INOUT

INOUT

TIC
INOUT

TRR
INOUT

11.8.2 read a[i,

INOUT

TA

TIR

TIR

INDA

INOUT

TIA
INOUT

11.8.3

TIC
INOUT

11.8.4 print

INOUT

US

£00
£2°7T

£ABL

£E~

R23 TA

INOUT

- 35 -

20
2

y
IxI >I

3

23

2
18

Zz

hy

Jj],

20
A
i
Jj
6
2

k
ah

digits (4);

7

20
R23°

84;

15

(ot)

x*y, sameline, digits (3), 23

(reset settings)

(print integer)

(sameline local)

ere
digits local)

(print real)

(reset settings)

(read a real)

(read an integer)

digits global)

““U2~ TABLE;

(assumes £7°L at location
8h)

C
x

11.9 for stateinent

fory := 5,6,xX + 1 while Xx. < 10,12 step 1 until 18 do

PRIM FOR

fe) R14
+864 (BN = 54)
(o) R15
TIA oa

TIC (45) “—
PRIM DO

TIC (+6) cq
PRIM DO

TIR LX .
TLC 1 (41) <— oor anes
PRIM I+I eremencs
PRIM STW

TIR xX

TLC (+10)
PRIM I<I9B
PRIM WHILE

TIC (+12)
PRIM STEP

TIC a (i) <<
TIC (418
PRIM UNTIL

PRIM FSE -end
dunny

R14 eee

‘ controlled statement

PRIM RR

R15

next statement

eee

11.10 Library Procedure call

11.10.1 x: = abs (y);

TRA ba

TRR. y
PRIM ABS (always in interpreter)
PRIM ST

11.10.2.x: = sin (y);
TRA x
PRIM UP
TRR y
CF SIN (punched as right hand

global name)

PRIM st

- 36 =

August 1966

11,1i

11.12

In this example it is as if SIN had been added to

the SIR declarations at the start of the program,

The loader does not care whether SIN occurs before

or after this point and establishes a chain for a

series of calls.

Procedure body and call

begin integer procedure SUM (a,b); value a,
integer a,b;

SUM: = a+b;

Integer X,y;

%: = SUM (4,5);

end;

PRIM CBL
UI R1
PE 816 (BN = 51)
Ud R2

SUM PE 834 (BN = 52, m=2)
/1 ()
1 (0)
IFUN 832
TF a
TRCN b
PRIM I+L 31
PRIM ST
PRIM RETURN (END OF PROC BODY)

R2 TIA x
PRIM UP
TIC +4
TICA +5
CF SUM
PRIM ST
PRIM RETURN

R1 PRIM FINISH

Permissible actual/formal correspondence

The general idea is that at the point of call,
a value is left in the stack for every formal para-

meter called by value and an address is left for

those which are called by name. Type conversion is

explicitly done. The pords at the point of call
are shown below:-.

11.12.11 Formal real called by value

Declared real TRR
0 integer TIR and PRIM I TO R1

- 37 =

array element «>». INDR and possibly

convert,

type procedure PRIM UP ... CF and

. possibly convert.
constant TRC or TIC and PRIMITOR1L

Formal real on value list TF
Formal real called by name TRCN
Formal integer etc as real with

conversion,

11.12.2 Formal real called by name

Declared real TRA
Constant TRCA

Formal real on value list RFUN
Formal real called by name TF

Inside the body the parameter may appear on the left
or the right of a: = sign and it may be called by
mame or value. These four cases produce pords as

follows:-

On the left On the right

By name [FP TRCN
By value RFUN TF

For arrays, procedures and strings which all have
address among the program pords, a TA pord is used at
the original point of call; if the parameter is to be
handed on to an inside procedure then at the inner point

of call a TF pord is produced.

A label may or may not be on the value list; if so
then the actual parameter can be either a label TLA, or
the element of a switch TIR, INDS ... It is regretted
that it cannot be the element of a formal switch.

Array and procedure parameters must always corres-
pond in type and number of dimensions or parameters, F
At the point of call the pord which refers to the follow-
ing actual parameters is followed by the indicated
primitive which places an integer in the stack for checking,

purposes.

boolean or integer array PRIM 63 43

real array 64 +4
tt " dgnteger procedure 65 +5

real procedure 66 +6
procedure 67 +7 6
switch 68 +8 :
label 69 49
string 70 +10

- 38 =

Inside the procedure body, at the first reference

to an array or procedure parameter the checking word

which was punched out at the head of the body is altered

to indicate the number of dimensions or parameters.

This is done by using loader code 3. If there is no

reference to the parameter in question, then the address

part of the checking word contains +8191 at run time.

DGNH.

